Prediction of signal peptides in protein sequences by neural networks.
نویسندگان
چکیده
منابع مشابه
Prediction of signal peptides in protein sequences by neural networks.
We present here a neural network-based method for detection of signal peptides (abbreviation used: SP) in proteins. The method is trained on sequences of known signal peptides extracted from the Swiss-Prot protein database and is able to work separately on prokaryotic and eukaryotic proteins. A query protein is dissected into overlapping short sequence fragments, and then each fragment is analy...
متن کاملRegular paper Prediction of signal peptides in protein sequences by neural networks
We present here a neural network-based method for detection of signal peptides (abbreviation used: SP) in proteins. The method is trained on sequences of known signal peptides extracted from the Swiss-Prot protein database and is able to work separately on prokaryotic and eukaryotic proteins. A query protein is dissected into overlapping short sequence fragments, and then each fragment is analy...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملIn silico prediction of anticancer peptides by TRAINER tool
Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...
متن کاملPeptideLocator: prediction of bioactive peptides in protein sequences
MOTIVATION Peptides play important roles in signalling, regulation and immunity within an organism. Many have successfully been used as therapeutic products often mimicking naturally occurring peptides. Here we present PeptideLocator for the automated prediction of functional peptides in a protein sequence. RESULTS We have trained a machine learning algorithm to predict bioactive peptides wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Biochimica Polonica
سال: 2008
ISSN: 1734-154X,0001-527X
DOI: 10.18388/abp.2008_3073